exterior$26902$ - traducción al griego
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

exterior$26902$ - traducción al griego

IN DIFFERENTIAL GEOMETRY, A DIFFERENTIAL OPERATION DEFINED IN DIFFERENTIAL FORMS THAT INCREASES THE FORM DEGREE BY 1
Exterior differentiation; Invariant formula for exterior derivative

exterior      
n. εξωτερική όψη
external angle         
TERM IN GEOMETRY
Interior angle; Interior angles; Exterior angle; External angle; Internal angle; Angle sum of polygon; Angle sum of polygons; ∠ sum of polygons; Internal and external angle; Exterior angles; Turning angle; Turn angle
εξωτερική γωνία
internal angle         
TERM IN GEOMETRY
Interior angle; Interior angles; Exterior angle; External angle; Internal angle; Angle sum of polygon; Angle sum of polygons; ∠ sum of polygons; Internal and external angle; Exterior angles; Turning angle; Turn angle
εσωτερική γωνία

Definición

Exterior Gateway Protocol
(EGP) A protocol which distributes routing information to the routers which connect autonomous systems. The term "gateway" is historical, and "router" is currently the preferred term. There is also a routing protocol called EGP defined in STD 18, RFC 904. See also {Border Gateway Protocol}, Interior Gateway Protocol.

Wikipedia

Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.